MARKSCHEME

November 2014

BIOLOGY

Higher Level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Option D - Evolution

1. (a) as nitrogen levels increase so does epidemic size / positive correlation /relationship
(b) increases in nitrogen means more food/phytoplankton (for D. dentiferal Daphnia); more food means a bigger D. dentifera/Daphnia population; a bigger D. dentifera/Daphnia population leads to more infection (by the parasite);
(c) high epidemic sizes associated with higher populations of D. dentifera/Daphnia; the greater the population of D. dentifera/Daphnia, the greater the possibility of variation/mutations in population;
some of the variations may include greater resistance to the parasite;
(resistant strains) have a greater chance of reproducing/produce more offspring;
(leads to) selection in favour of resistant strains / death of non resistant strains;
(d) the resistant strains of D. dentiferalDaphnia will increase; predators eating the infected D. dentifera/Daphnia reduce the epidemic; the resistant strains of D. Daphnia lose their adaptive advantage;
2. (a) fossils are rare / fossilization is rare;
fossil record is incomplete / fossils may not be representative of the species; some parts of organisms do not fossilize / only part of organisms found; dating of fossils is only approximate / OWTTE;
[2 max]
(b) the half-life is the time taken for half the parent atoms to decay to the daughter atoms / OWTTE
(c) (i) $18000(\mathrm{y})$ (allow answers in the range of $17500(y)$ and $18500(y)$)
(ii) there is very little carbon-14 left after 50000 years / OWTTE
(d)

genetic	cultural
concerns genetic make up/DNA/genes /physical characteristics / OWTTE	concerns customs/language/tools /thinking / OWTTE;
modified through natural selection/ transmitted through heredity/"nature"	modified/transmitted through learning/"nurture";
passed to offspring	passed to kin (family)/social group/ population;
slow change	fast change;

Award [1] for each valid distinction between genetic and cultural evolution.
3. a cladogram is (often) a tree-like diagram;
nodes/branches represent the splitting of (two) new groups from a common ancestor/ nodes represent common ancestor; members of a clade (above a node) evolved from a common ancestor;
members of a clade share a set of features not found in more distantly related species;
(accept these marking points on a clearly annotated diagram) classification was traditionally based on morphology; morphology is still important in cladistics for fossil species; cladistics is also based on molecular differences/base sequences/amino acid sequences; cladistics is based on probability/the Principle of Parsimony/Occam's razor; but improbable events do occur, so relationships can be wrong; cladistics allow predictions to be made; but a common ancestor may not have existed/diverging species may hybridize; classification based on cladograms often give the same result as traditional classification; in some groups cladograms have led to revised classification;

Option E - Neurobiology and behaviour

4. (a) using the waggle dance / OWTTE;
intensity of (waggle) dance indicates the distance of the food source;
the orientation of the (waggle) dance on the hive indicates the direction relative to the position of the Sun;
(b) the expression of the gene in the scouts and the non-scouts is the same
(c) Eaat-2
(d) $\quad G L T:(0.13-0.08=) 0.05$;

OA: $\quad(0.10-0.08=) 0.02$;
(e) the expression of (neurotransmitter) genes that encourage scouting in bees vary; those bees showing scouting behaviour will find more food sources; the hive/bees will receive more food; more offspring carrying the genes/alleles for scouting will survive; the genes/alleles for scouting will increase in the population;
5. (a) Award [1] for each two correct and [1] for a correct sequence of three answers. receptor (cell) / named receptor cell;
sensory neuron;
relay neuron / interneuron;
motor neuron;
effector/appropriate example; (eg: muscle)
Marks can be awarded for a clearly drawn correctly labelled diagram.

(c) endorphins block the transmission of impulses at synapses involved in pain perception
6.

kinesis	taxis
degree of movement (in no particular direction) / OWTTE	displacement towards/away from a stimulus / OWTTE
named invertebrate appropriate for the stated behaviour; (common names eg: meal worm, blow fly larva, accepted but must be precise eg: bug, maggot, insect are unacceptable)	
identify environmental condition/stimulus; (eg: light)	
identify independent and dependent variables as such;	
describe controlled variables; (eg: temperature or pH)	
appropriate apparatus providing necessary contrasting conditions;	
method to determine the rate of movement/displacement; method to determine the direction of	
repeated method/measurements / sample size considered; movement;	
control experiment / control group;	

Award [5 max] if the behaviour being investigated is wrongly identified as taxis/kinesis or the organism is not an invertebrate.

Option F - Microbes and biotechnology

7. (a) 35 (allow answers in the range of 30 to 40)
(b) both diminish with (increased) depth; the oxygen concentration shows less variation/has a clearer trend; the oxygen consumption is lowest (on average) at 15 m but the oxygen concentration is lowest at 28 m ; both are exponential;
(c) (i) aerobic respiration;
chemoautotrophy;
Do not accept photosynthesis.
(ii) organic matter / organic carbon / dead organic matter/detritus falling from the surface waters;
mineral rich deposits available to chemoautotrophs;
(d) less diffusion of oxygen from water above sediments with depth/at $22 \mathrm{~m} /$ consumption proportional to oxygen available;
different species may have different consumption rates / swap between aerobic and anaerobic respiration / OWTTE;
more compact sediments at 22 m so less space for microbes;
Accept converse arguments for conditions at 2 m .
Do not accept less microbes as it is oxygen consumption per cell.
8. (a)

(i) X : Accept answer on the line between N_{2} and plant protein.
(ii) Y: Accept answer on the line between NO_{2}^{-}and NO_{3}^{-}.
(b) starch (must be) first hydrolysed (to sugar/maltose) by amylase;

Saccharomyces/yeast then (breaks down) sugars to ethanol/ $\}$ (both alcohol and CO_{2};
by fermentation / anaerobic cell respiration;
(c) (i) catalyses the production of (single-stranded) DNA from RNA
(ii) retrovirus / HIV / RNA virus
Accept the first answer given by the candidate.
(d) lipopolysaccharides causing fever and aches; found in walls/outer membrane of Gram-negative bacteria;
9. methane gas is produced by methanogens/Methanococcus/Methanobacterium; (methanogens are) chemoautotrophs;
biomass/sewage/wood pulp/manure added to the fermenter/digester;
anaerobic conditions/absence of oxygen required;
require warm conditions to work best/an optimum temperature of $35^{\circ} \mathrm{C}$ / (methanogens) are thermophiles;
optimum pH of 6.5 to $8 /$ neutral/slightly alkaline pH needs to be maintained; methanogens need to be associated with decomposers/heterotrophic bacteria; some bacteria digest/ferment organic waste (biomass) into organic acids and alcohol; other bacteria convert organic acids/alcohol into acetate, carbon dioxide and hydrogen; (methanogens) produce methane from CO_{2} and $\mathrm{H}_{2} /$ the breakdown of acetate / $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}_{2}$ or $4 \mathrm{H}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$;
the biogas produced consists of about $60 \% \mathrm{CH}_{4}$;

Option G - Ecology and conservation

10. (a) 48 (\%) (allow answer in the range of 40 (\%) to 49 (\%))
(b) Greenland chicks are fed more C. hyperboreus (than the Spitzbergen chicks); Spitzbergen chicks are fed more C. glacialis (than Greenland chicks); more "other prey" for Greenland chicks and more C. finmarchicus for Spitzbergen chicks;
Do not accept answers quoting only numerical values from graphs without any other statement.
(c) 155 individuals m^{-3} (allow answers in the range of 150 to 155 individuals m^{-3})
(d) there is very little C. hyperboreus so they choose to feed on the next highest energy source/C. glacialis / OWTTE;
(e) in cold waters (off Greenland) C. hyperboreus is more abundant; in warmer waters (off Spitzbergen) C. hyperboreus is rare but C. finmarchicus is very abundant;
C. hyperboreus provides more energy than C.finmarchicus/C. glacialis / chicks fed on C. hyperboreus receive more energy than those fed on C. finmarchicus/ C. glacialis;
(therefore) in cold waters chicks receive more energy in their food;
(therefore) in areas where there is cold water the chicks will/should grow more quickly;
11. (a) captive breeding/zoos/aquariums;
botanical gardens;
seed banks;
(b) maximum sustainable yield is the largest yield that could be taken without harming the population size / OWTTE;
aims to target the exponential phase of the population growth curve / half of the carrying capacity;
harvesting/fishing should balance recruitment/survival/natality/birth rate; used to establish quotas/regulation;
(c) pioneer community/early stages has low diversity; as the community develops the diversity will increase; competitor community/intermediary stage has higher diversity; climax community/late stages has highest diversity;
12. valid name of species; (eg: rabbits) (accept common names)
location/statement of the problem; (eg: Australia or devastation of farmland) type of release; (deliberate/controlled release/originally farmed)
increases stress on the environment / upsets the food chains/webs;
no natural limiting factors of the species / predators/diseases absent;
alien species population increases exponentially;
competes with local species for resources;
valid example of affected species;
method to control invader; (eg: rabbits in Australia by myxomatosis) may lead to extinction of local species / reduces species diversity;
If more than one example given, mark all and annotate the example gaining the most marks.
Award [3 max] if no specific example is given.

Option H - Further human physiology

13. (a) platelets stick together/stick to blood vessel walls during a thrombosis; platelets release clotting factors;
(b) BMI;
genetic risk;
non-smokers;
sex;
age;
other relevant factor;
(c) $-34(\%)$ (minus required) (allow answers in the range of $-32(\%)$ to $-36(\%))$
(d) both decrease in the period from before to during the games
and rise again afterwards;
sCD62P falls and rises more than sCD40L / mean change higher for sCD62P than sCD40L;
sCD 40 L has proportionally greater error bars/shows more variation than sCD62P;
(e) hypothesis supported: [2 max]
three of the markers / sCD62P, sCD40L and von Willebrand factor decrease as the air pollution decreases;
three of the markers/sCD62P, sCD40L and fibrinogen increased as air pollution increased after the games;
hypothesis not supported: [2 max]
fibrinogen levels did not change with decreased air pollution;
von Willebrand factor remained low after the games;
uncertainty in the data shown by error bars;
the study is not a controlled experiment / the changes could be influenced by other factors;
$\left.\begin{array}{ll}\text { 14. (a) II. } & \text { (branch of) hepatic artery; } \\ \text { III. } & \text { (branch of) hepatic portal vein; }\end{array}\right\}$ (both needed)
(b) $\quad \mathrm{CO}_{2}$ reacts with water in red blood cells/erythrocytes to form H^{+}and $\mathrm{HCO}_{3}^{-}{ }^{-}$ bicarbonate/hydrogen carbonate ions;
HCO_{3}^{-}/bicarbonate/hydrogen carbonate ions diffuse/move out of red blood cells/ erythrocytes;

Do not accept mechanisms other than diffusion.
(c) diffusion through cell membrane of fat soluble molecules (eg: vitamin A)/ fatty acids/monoglycerides;
absorption of lipids/triglycerides by pinocytosis/micelles binding with lipid bilayer of the cell membrane;
facilitated diffusion of water/minerals/fructose through pore channels;
active transport linked to $\left(\mathrm{Na}^{+} / \mathrm{K}^{+}\right)$pump protein of amino acids/glucose/ galactose/certain minerals/water soluble vitamins; endocytosis of vitamins (eg: vitamin B_{12})/hemoglobin;
[2 max]
14. both/pepsin and trypsin are proteases/proteolytic enzymes;
both/pepsin and trypsin are synthesized as inactive pro-enzymes/precursors to prevent auto-digestion;
both/pepsin and trypsin hydrolyse peptide bonds of proteins/peptides in food to form shorter chains of amino acids/peptides;
pepsin: [3 max]
pepsin is synthesized as inactive (pro-enzyme) pepsinogen;
in the chief cells of (the gastric pits of) the stomach;
pepsinogen is secreted into the stomach lumen (where the food is);
it is transformed into active pepsin by freeing the active site;
activation is brought about by HCl (and pepsin itself);
trypsin: [3 max]
trypsin is synthesized as inactive (pro-enzyme) trypsinogen;
in the pancreas exocrine cells/acini;
trypsinogen travels to the small intestine/duodenum lumen (where the food is);
trypsinogen is activated by enteropeptidase/enterokinase (and active trypsin itself in the duodenum);
